Myosin-Va restrains the trafficking of Na+/K+-ATPase-containing vesicles in alveolar epithelial cells.

نویسندگان

  • Emilia Lecuona
  • Alexander Minin
  • Humberto E Trejo
  • Jiwang Chen
  • Alejandro P Comellas
  • Haiying Sun
  • Doris Grillo
  • Oxana E Nekrasova
  • Lynn C Welch
  • Igal Szleifer
  • Vladimir I Gelfand
  • Jacob I Sznajder
چکیده

Stimulation of Na(+)/K(+)-ATPase activity in alveolar epithelial cells by cAMP involves its recruitment from intracellular compartments to the plasma membrane. Here, we studied the role of the actin molecular motor myosin-V in this process. We provide evidence that, in alveolar epithelial cells, cAMP promotes Na(+)/K(+)-ATPase recruitment to the plasma membrane by increasing the average speed of Na(+)/K(+)-ATPase-containing vesicles moving to the cell periphery. We found that three isoforms of myosin-V are expressed in alveolar epithelial cells; however, only myosin-Va and Vc colocalized with the Na(+)/K(+)-ATPase in intracellular membrane fractions. Overexpression of dominant-negative myosin-Va or knockdown with specific shRNA increased the average speed and distance traveled by the Na(+)/K(+)-ATPase-containing vesicles, as well as the Na(+)/K(+)-ATPase activity and protein abundance at the plasma membrane to similar levels as those observed with cAMP stimulation. These data show that myosin-Va has a role in restraining Na(+)/K(+)-ATPase-containing vesicles within intracellular pools and that this restrain is released after stimulation by cAMP allowing the recruitment of the Na(+)/K(+)-ATPase to the plasma membrane and thus increased activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Na+,K+-ATPase motion and incorporation into the plasma membrane in response to G protein-coupled receptor signals in living cells.

Dopamine (DA) increases Na(+),K(+)-ATPase activity in lung alveolar epithelial cells. This effect is associated with an increase in Na(+),K(+)-ATPase molecules within the plasma membrane (). Analysis of Na(+),K(+)-ATPase motion was performed in real-time in alveolar cells stably expressing Na(+),K(+)-ATPase molecules carrying a fluorescent tag (green fluorescent protein) in the alpha-subunit. T...

متن کامل

بررسی سلولی‌ تومور و مکان‌یابی آنزیم Na+, K+-ATPase در موش توموری شده (Balb/c nu) با استفاده از رده سلولی 4T1

Background and purpose: The 4T1 cell line is a laboratory model used in the study of tumors biology. This cell line is very tumorigenic with high metastatic capacity in different organs. In this study, histology and immunohistochemistry methods were used to investigate the structure and localization of Na+/K+- ATPase enzyme in 4T1 cells induced breast cancer tumor in Balb/c nu mice. Material...

متن کامل

Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin

Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolatera...

متن کامل

Mechanical stretching of alveolar epithelial cells increases Na(+)-K(+)-ATPase activity.

Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. ...

متن کامل

Alveolar type 1 cells express the alpha2 Na,K-ATPase, which contributes to lung liquid clearance.

The alveolar epithelium is composed of alveolar type 1 (AT1) and alveolar type 2 (AT2) cells, which represent approximately 95% and approximately 5% of the alveolar surface area, respectively. Lung liquid clearance is driven by the osmotic gradient generated by the Na,K-ATPase. AT2 cells have been shown to express the alpha1 Na,K-ATPase. We postulated that AT1 cells, because of their larger sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 122 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2009